Managing Time Varying Data in RDBMS
In the realm of database management, there exists a category of data that is inherently dynamic and time sensitive. This type of data evolves over time, capturing changes, updates, and historical snapshots. Managing such time-varying data presents unique challenges and requires specialized techniques to ensure accurate storage, retrieval, and analysis. This is where the concept of temporal databases comes into play. Temporal databases are designed to handle time-varying data within the framework of Relational Database Management Systems (RDBMS). They enable the storage and manipulation of data while maintaining temporal aspects such as valid time (the time period during which data is considered valid) and transaction time (the time at which data is recorded or modified). There are several key components involved in managing time-varying data within an RDBMS: Temporal Data Model : Temporal databases typically extend the traditional relational data model to incorporate temporal dimension